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EXAMEN DE SELECTIVIDAD JUNIO 2025. MATEMÁTICAS II 

 

PREGUNTA 1: PROBABILIDAD Y ESTADÍSTICA (2,5 puntos) 

Una pizzería ofrece tres tipos de pizza: margarita, vegetariana y pepperoni. A lo largo de 

los años, utilizando su aplicación para teléfonos inteligentes, el restaurante ha recopilado 

datos sobre las preferencias de los clientes, calculando que el 40% de sus clientes piden 

pizza margarita, el 25% elige la pizza vegetariana y el resto prefiere la pizza pepperoni. 

1.1 (0.25 puntos) Si se elige un cliente al azar, ¿cuál es la probabilidad de que haya 

pedido una pizza pepperoni? 

Sucesos:  

M = clientes que piden pizza margarita con una P(M) = 0.40 

V= clientes que piden pizza vegetariana con una P(V) = 0.25 

P = clientes que piden pizza Margarita con una P(P) = 0.35 

P(P) = 0.35 

 

1.2 (0.75 puntos) ¿Cuál es la probabilidad de que dos clientes elegidos al azar hayan 

pedido distintos tipos de pizza? 

AA = dos clientes al azar hayan pedido distintos tipos de pizza 

 

1 forma 

𝑃(𝐴𝐴) = 𝑃(𝑀 ∩ 𝑉) + 𝑃(𝑉 ∩ 𝑀) + 𝑃(𝑀 ∩ 𝑃) + 𝑃(𝑃 ∩𝑀) + 𝑃(𝑉 ∩ 𝑃) + 𝑃(𝑃 ∩ 𝑉) = 

= 2 ∙ 0.40 ∙ 0.25 + 2 ∙ 0.40 ∙ 0.35 + 2 ∙ 0.25 ∙ 0.35 = 0.655  

 

2 forma 

 

𝑃(𝐴𝐴̅̅ ̅̅ ) = 𝑃(𝑀𝑀) + 𝑃(𝑉𝑉) + 𝑃(𝑃𝑃) = 0.40 ∙ 0.40 + 0.20 ∙ 0.20 + 0.35 ∙ 0.35 = 0.345 

𝑃(𝐴𝐴) = 1 − 𝑃(𝐴𝐴̅̅ ̅̅ ) = 1 − 0.345 = 0.655 

 

http://www.pinae.es/


José Aurelio Pina Romero    JUNIO 2025 MII 

 

www.pinae.es    2 

Para mejorar su servicio y agilizar los tiempos de preparación, la pizzería decide 

considerar un grupo típico de 10 clientes con el objetivo de decidir cuántas pizzas 

margarita preparar con antelación y evitar retrasos durante las horas con más demanda, 

minimizando el desperdicio. 

1.3 (0.75 puntos) ¿Cuál es la probabilidad de que exactamente 4 de los 10 clientes 

pidan pizzas margarita? 

 

X = número de clientes que piden una pizza margarita 

p = 4/10 = 0.40  

 𝑋 = B(n=10,p=0.40) 

𝑃(𝑋 = 𝑘)  = (
𝑛
𝑘
) 𝑝𝑘 ∙ (1 − 𝑝)𝑛−𝑘  → 𝑃(𝑋 = 4)  = (

10
4
) 0.44 ∙ (1 − 0.4)10−4 = 0.2508 =0.2508  

 

1.4 (0.75 puntos) ¿Cuál es la probabilidad de que al menos uno de los 10 clientes del 

grupo pida una pizza margarita? 

𝑃(𝑋 ≥ 1)  = 1 − 𝑃(𝑋 < 1) = 1 − 𝑃(𝑋 = 0) = 1 − (
10
0
)0.40 ∙ (1 − 0.4)10−0 = 1 − 00605

= 0.99395 

 

https://www.geogebra.org/m/cjhsydmb 
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PREGUNTA 2: ÁLGEBRA (2,5 puntos) 

2.1 En un sistema de procesamiento de imágenes se utiliza una matriz para transformar 

ciertos datos. La matriz depende del parámetro real 𝛼 y es: 

𝑨 = (
𝟏 𝜶 𝟎
𝟎 𝜶 𝟎
𝟎 𝟎 𝟏 − 𝜶

) 

2.1.1 (1.25 puntos) En uno de los procesos, para que el sistema funcione, se necesita que 

la matriz sea idempotente, es decir que su cuadrado coincida con ella, 𝐴2 =  𝐴. Obtener 

los valores 𝛼 que permitan funcionar a este proceso. 

𝐴2 = (
𝟏 𝜶 𝟎
𝟎 𝜶 𝟎
𝟎 𝟎 𝟏 − 𝜶

)(
𝟏 𝜶 𝟎
𝟎 𝜶 𝟎
𝟎 𝟎 𝟏 − 𝜶

) = (
𝟏 + 𝜶 ∙ 𝟎 + 𝟎 ∙ (𝟏 − 𝜶) 𝜶𝟐 + 𝜶 𝟎

𝟎 𝜶𝟐 𝟎
𝟎 𝟎 (𝟏 − 𝜶)𝟐

) 

 

𝑆𝑖 𝐴2 =  𝐴 → (
𝟏 + 𝜶 ∙ 𝟎 + 𝟎 ∙ (𝟏 − 𝜶) 𝜶𝟐 + 𝜶 𝟎

𝟎 𝜶𝟐 𝟎
𝟎 𝟎 (𝟏 − 𝜶)𝟐

) = (
𝟏 𝜶 𝟎
𝟎 𝜶 𝟎
𝟎 𝟎 𝟏 − 𝜶

) 

𝜶𝟐 + 𝜶 = 𝜶 → 𝜶𝟐 = 𝟎 → 𝜶 = 𝟎 

(𝟏 − 𝜶)𝟐 = 𝟏 − 𝜶 → 𝟏 − 𝟐𝜶 + 𝜶𝟐 = 𝟏 − 𝜶 → 𝜶𝟐 − 𝜶 = 𝟎 →
𝜶 = 𝟎
𝜶 = 𝟏

 

𝛼2 =  𝛼 → 𝛼2 − 𝛼 =  0 →
𝛼 = 0
𝛼 = 1

 

Y puesto que para que  𝐴2 =  𝐴  los valores de 𝛼  deben de ser iguales en la totalidad de 

las ecuaciones.  

Solución: para que A sea idempotente 𝜶 = 𝟎 

Nota: En GeoGebra se puede introducir una matriz con parámetro, pero se debe de 

utilizar x como parámetro.  

Dos formas distintas  

A={{1,x,0},{0,x,0},{0,0,1-x}}  

 

Mediante la hoja de cálculo.  

1) Los elementos se introducen en las 

celdas.   

2) se seleccionan los elementos y se pulsa 

botón derecho de ratón → Crear matriz  

https://www.geogebra.org/m/fcehuurm 
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2.1.2 (1.25 puntos) En otro proceso diferente, se necesita utilizar la matriz inversa de 𝐴. 

Obtener los valores de 𝛼 para los cuales existe la inversa y calcular esta inversa en 

función de 𝛼. 

∃ 𝐴−1 𝑠𝑖 |𝐴| ≠ 0 

Vamos a calcular el determinante de la matriz A en función de 𝛼  

 

|
𝟏 𝜶 𝟎
𝟎 𝜶 𝟎
𝟎 𝟎 𝟏 − 𝜶

| = (𝟏 ∙ 𝜶 ∙ (𝟏 − 𝜶) + 𝟎 ∙ 𝟎 ∙ 𝟎 + 𝟎 ∙ 𝜶 ∙ 𝟎) − (𝟎 ∙ 𝜶 ∙ 𝟎 + 𝟎 ∙ 𝟎 ∙ 𝟏 + (𝟏 − 𝜶) ∙ 𝟎 ∙ 𝜶)

= 

= 𝜶 − 𝜶𝟐 = 𝟎 → 𝜶 ∙ (𝟏 − 𝜶) = 𝟎 →
𝜶 = 𝟎

𝟏 − 𝜶 = 𝟎 → 𝜶 = 𝟏
 

∃ 𝐴−1 𝑐𝑢𝑎𝑛𝑑𝑜 𝜶 ≠ 𝟎 𝒐 𝜶 ≠ 𝟏  

Ahora vamos a calcular la inversa de A en función de 𝛼 

𝐴−1 =
1

|𝐴|
(𝐴𝑑𝑗(𝐴)𝑡) 

 

𝐴𝑑𝑗(𝐴) =

(

  
 

(−1)1+1 |
𝜶 0
0 1 − 𝜶

| − |
0 0
0 1 − 𝜶

| + |
0 𝜶
0 0

|

− |
𝜶 0
0 1 − 𝜶

| + |
1 0
0 1 − 𝜶

| − |
1 𝜶
0 𝟎

|

+ |
𝜶 0
𝜶 0

| − |
1 0
0 0

| + |
1 𝜶
0 𝜶

|)

  
 
= (

−𝜶2 + 𝜶 0 0
𝜶2 − 𝜶 −𝜶 + 𝟏 0
0 0 𝜶

) 

𝐴𝑑𝑗(𝐴)𝑡 = (
−𝜶2 + 𝜶 𝜶2 − 𝜶 0

0 −𝛼 + 1 0
0 0 𝛼

) 

𝐴−1 =
1

|𝐴|
(𝐴𝑑𝑗(𝐴)𝑡) =

1

𝜶 − 𝜶𝟐
∙ (
−𝜶2 + 𝜶 𝜶2 − 𝜶 0

0 −𝛼 + 1 0
0 0 𝛼

) = (

1 −1 0
0 1/𝛼 0

0 0 1/(1 − 𝛼)
) 

 

Una forma de comprobar con la calculadora o con GeoGebra que 𝐴𝑑𝑗(𝐴)𝑡 es despejar de 

la igualdad.  

𝐴−1 =
1

|𝐴|
(𝐴𝑑𝑗(𝐴)𝑡) → 𝐴−1 ∙ |𝐴| = 𝐴𝑑𝑗(𝐴)𝑡 

https://www.geogebra.org/m/fcehuurm 

Nota: GeoGebra dispone de un manual donde se pueden consultar los comandos 

disponibles por áreas. https://geogebra.github.io/docs/manual/es/ 

http://www.pinae.es/
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2.2 Sea el sistema de ecuaciones lineales {

3𝑥 − 2𝑦 − 3𝑧 = 0
2𝑥 + 𝑎𝑦 − 5𝑧 = −3
𝑥 + 𝑦 + 2𝑧 = 3

 

donde a es un parámetro real. Se pide:  

 

2.2.1 (1 punto) Discutir el sistema en función del parámetro a. 

Para discutir el sistema debemos de emplear el T. Rouché-Frobenius, para ello debemos 

de estudiar el rango de la matriz de coeficientes y de la ampliada. 

𝐴 = (
3 −2 −3
2 𝑎 −5
1 1 2

)   𝐴 ∗= (
3 −1 −3 ⋮ 0
2 𝑎 −5 ⋮ −3
1 1 2 ⋮ 3

) 

Para estudiar el rg(A) debemos calcular el determinante de la matriz de coeficientes. 

|𝐴| = |
3 −2 −3
2 𝑎 −5
1 1 2

| = 9𝑎 + 27 = 0 → 𝑎 = −3 

Caso 1: (a≠ -3) 

 

Si a≠ -3  → rg(A) = 3 = rg(A*) = número de incógnitas → SCD.  

 

Nota: el rg(A*) = 3 puesto que A’ es una matriz 3x4 y su rango es 3 cómo máximo, y 

puesto que una de las matrices de la ampliada es A entonces su rango coincide con esta.  

 

Caso 2: (m= -3) 

 

 

𝐴 = (
3 −2 −3
2 −3 −5
1 1 2

)  𝐴 ∗= (
3 −1 −3 ⋮ 0
2 −3 −5 ⋮ −3
1 1 2 ⋮ 3

) 

 

Puesto que |𝐴| = 0 → 𝑟𝑔(𝐴) = 2 (puesto que existe una matrix 2x2 con determinante 

distinto de 0)  

|3| = 3 ≠ 0 

|
3 −2
2 −3

| = −9 + 4 = −5 ≠ 0 
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Ahora estudiamos el determinante de A*  

𝐴 ∗= (
3 −1 −3 ⋮ 0
2 −3 −5 ⋮ −3
1 1 2 ⋮ 3

) 

Comprobamos si existe una matriz 3x3 cuyo determinante es diferente de cero. 

 

|𝐴1| = |
3 −1 0
2 −3 −3
1 1 3

| = 0 |𝐴2| = |
−1 −3 0
−3 −5 −3
1 2 2

| = 0 |𝐴3| = |
3 −3 0
2 −5 −3
1 2 2

| = 0 

 

Y, por tanto:  rg(A) = 2 rg(A’) = 2 < número de incógnitas → SCI  

 

Conclusión:  

 

Si a≠-3 → rg(A) = 3 = rg(A’) = número de incógnitas → SCD.  

Si a=-3 rg(A) = 2 rg(A’) = 2 < número de incógnitas → SCI  

 

2.2.2 (0.75 puntos) Calcular las soluciones del sistema cuando éste sea compatible 

indeterminado. 

Sustituimos a por -3, y resolvemos por Gauss o por Cramer: 

{

3𝑥 − 2𝑦 − 3𝑧 = 0
2𝑥 − 3𝑦 − 5𝑧 = −3
𝑥 + 𝑦 + 2𝑧 = 3

 

(
3 −1 −3 ⋮ 0
2 −3 −5 ⋮ −3
1 1 2 ⋮ 3

)
→

𝐹1 ↔  𝐹3
(
1 1 2 ⋮ 3
2 −3 −5 ⋮ −3
3 −2 −3 ⋮ 0

)→ 𝐹2 − 2𝐹1 →
𝐹3 − 3𝐹1

(
1 1 2 ⋮ 3
0 −5 −9 ⋮ −9
0 −5 −9 ⋮ −9

) 

  

(
1 1 2 ⋮ 3
0 −5 −9 ⋮ −9
0 −5 −9 ⋮ −9

)

𝐹3 −  𝐹2

→ (
1 1 2 ⋮ 3
0 −5 −9 ⋮ −9
0 0 0 ⋮0

) 

Tomamos como 𝑧 = 𝜆, y sustituimos en el sistema:  

−5𝑦 − 9𝑧 = −9 → −5𝑦 − 9 ∙ 𝜆 = −9 → 𝑦 =
9 − 9𝜆

5
 

𝑥 + 𝑦 + 2𝑧 = 3 → 𝑥 +
9 − 9𝜆

5
+ 2𝜆 = 3 → 𝑥 =

6 − 𝜆

5
 

Solución: (𝑥, 𝑦, 𝑧) = (
6−𝜆

5
,
9−9𝜆

5
, 𝜆) 𝜆 ∈ 𝑅 

http://www.pinae.es/
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2.2.3  (0.75 puntos) Calcular las soluciones del sistema para  a = 0. 

Sustituimos a por -3, y resolvemos por Gauss o por Cramer: 

 

{

3𝑥 − 2𝑦 − 3𝑧 = 0
2𝑥       − 5𝑧 = −3
𝑥 + 𝑦 + 2𝑧 = 3

 

(
3 −1 −3 ⋮ 0
2 0 −5 ⋮ −3
1 1 2 ⋮ 3

)
→

𝐹1 ↔  𝐹3
(
1 1 2 ⋮ 3
2 0 −5 ⋮ −3
3 −2 −3 ⋮ 0

)→ 𝐹2 − 2𝐹1 →
𝐹3 − 3𝐹1

(
1 1 2 ⋮ 3
0 −2 −9 ⋮ −9
0 −5 −9 ⋮ −9

) 

  

(
1 1 2 ⋮ 3
0 −2 −9 ⋮ −9
0 −5 −9 ⋮ −9

)

2𝐹3 −  5𝐹2

→ (
1 1 2 ⋮ 3
0 −5 −9 ⋮ −9
0 0 27 ⋮27

) 

 

Y ahora resolvemos el sistema: 

{
𝑥 + 𝑦 + 2𝑧 = 3

        −2𝑦 −  9𝑧 = −9
                 27𝑧 = 27

 

𝑧 = 1 → −2𝑦 − 9 = −9 → −2𝑦 = 0 → 𝑦 = 0 

𝑥 + 𝑦 + 2𝑧 = 3 → 𝑥 + 0 + 2 = 3 → 𝑥 = 1 

Solución: (𝑥, 𝑦, 𝑧) = (1,0,1)  

https://www.geogebra.org/m/jtyxxy4x 
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P3.1 Dada la recta  𝑟: {
𝑥 = 1 + 2𝜆
𝑦 = 𝜆

𝑧 = 2 − 𝜆

  y la recta 𝑠: {
𝑥 = −1

𝑥 + 2𝑦 + 𝑧 = 0
 

 

Calcular: 

3.1.1 (1 punto) Si existen, las coordenadas del punto de corte de ambas rectas. 

1) Primero vamos a pasar la recta s a forma paramétrica 

𝑠: {
𝑥 = −1

𝑥 + 2𝑦 + 𝑧 = 0
 

𝑠: {

𝑥 = −1

𝑦 =
1 − 𝛼

2
𝑧 = 𝛼

, 𝛼 ∈ 𝑅 →
𝑃𝑠 = (−1,1/2,0)

𝑑𝑠⃗⃗⃗⃗ = (0,−1/2,1) ≈ (0,−1,2)
     

 

𝑟: {
𝑥 = 1 + 2𝜆
𝑦 = 𝜆

𝑧 = 2 − 𝜆

, 𝜆 ∈ 𝑅 →→
𝑃𝑟 = (1,0,2)

𝑑𝑟⃗⃗⃗⃗ = (2,1,−1)
  

2 ) Ahora vamos a estudiar la posición relativa de las rectas.  

Primero vamos a crear un vector determinado por los puntos de las rectas s y r.  

𝑃𝑠𝑃𝑟⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑃𝑟 − 𝑃𝑠 = (1,0,2) − (−1,1/2,0) = (2,−1/2,2) 

Ahora construimos las matrices M y M*:  

𝑀 = (
0 2
−1 1
2 −1

) ,𝑀∗ = (
0 2 2
−1 1 −1/2
2 −1 2

) 

Y estudiamos sus rangos:  

|2| = 2 ≠ 0 

|
0 2
−1 1

| = 0 + 2 = 2 ≠ 0 

Por tanto, el rg(M) = 2  

Ahora estudiamos el rango de M*  

|𝑀 ∗| = |
0 2 2
−1 1 −1/2
2 −1 2

| = 0  

Como  𝑟𝑔(𝑀)  =  2 𝑟𝑔(𝑀 ∗)  =  2 →  𝑟 𝑦 𝑠 𝑠𝑒 𝑐𝑜𝑟𝑡𝑎𝑛.  

3) Ahora hallamos el punto de corte de las rectas igualando  

−1 = 1 + 2𝜆 → 𝜆 = −1 → 𝑃𝐶 = (𝑥, 𝑦, 𝑧) = (−1,−1,3) 
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3.1.2 (1 punto) La ecuación del plano que contiene a ambas rectas. 

Para construir un plano necesitamos tres puntos o 1 punto y dos vectores directores:  

𝑑𝑠⃗⃗⃗⃗ = (0,−1/2,1) ≈ (0,−1,2) 

𝑑𝑟⃗⃗⃗⃗ = (2,1, −1) 

𝑃𝑟 = (1,0,2) 

𝜋: {

𝑥 = 1 + 2𝛽
𝑦 = −𝛼 + 𝛽
𝑧 = 2 + 2𝛼 − 𝛽

𝛼, 𝛽 ∈ 𝑅 → |
𝑥 − 1 0 2
𝑦 −1 1

𝑧 − 2 2 −1
| = 0 → 𝜋:−𝑥 + 4𝑦 + 2𝑧 − 3 = 0 

 

 

3.1.3 (0.5 puntos) La distancia del punto P = (1,0,2) a dicho plano. 

𝑑(𝑃, 𝜋) =
|𝐴 ∙ 𝑥0 + 𝐵 ∙ 𝑦0 + 𝐶 ∙ 𝑧0 + 𝐷|

√𝐴2 + 𝐵2 + 𝐶2
=
|−1 ∙ 1 + 4 ∙ 0 + 2 ∙ 2 − 3|

√(−1)2 + 42 + 22
= 0 → 𝑃 ∈ 𝜋 

https://www.geogebra.org/m/aqxmasy9 
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3.2 Se considera el plano 𝜋: 3𝑥 − 𝑦 + 2𝑧 = 4 y el punto 𝑃 = (−1,0,1). Se pide:  

3.2.1 (1 punto) La ecuación del plano perpendicular a p que pasa por 𝑃 𝑦  𝑄 = (2,1,2). 

 

Para construir un plano necesito dos vectores directores y punto, o tres puntos:  

 

𝑛𝜋⃗⃗ ⃗⃗ = 𝑑𝜎2⃗⃗ ⃗⃗ ⃗⃗  = (3,−1,2) 

  𝑑𝜎1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑃𝑄⃗⃗⃗⃗  ⃗ = 𝑄 − 𝑃 = (2,1,2) − (−1,0,1) = (3,1,1) 

𝑃 = (−1,0,1) 

 

La ecuación del plano viene dada por:  

𝜎: {

𝑥 = −1 + 3𝛼 + 3𝛽
𝑦 = −𝛼 + 𝛽
𝑧 = 1 + 2𝛼 + 𝛽

𝛼, 𝛽 ∈ 𝑅 → |
𝑥 + 1 3 3
𝑦 −1 1

𝑧 − 1 2 1
| = 0 → 𝜎:−3𝑥 + 3𝑦 + 6𝑧 − 9 = 0 

 

3.2.2 (0.5 puntos) La distancia del punto Q al plano π. 

 

𝑑(𝑃, 𝜋) =
|𝐴 ∙ 𝑥0 + 𝐵 ∙ 𝑦0 + 𝐶 ∙ 𝑧0 + 𝐷|

√𝐴2 + 𝐵2 + 𝐶2
=
|3 ∙ 2 − 1 ∙ 1 + 2 ∙ 2 − 4|

√32 + (−1)2 + 22
=

5

√14
=
5√14

14
𝑢  
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3.2.3 (1 punto) El punto simétrico de P respecto del plano π. 

 

1) Primero construimos la recta r,  perpendicular a π que pasa por P 

𝑛𝜋⃗⃗ ⃗⃗ = 𝑑𝑟⃗⃗⃗⃗ = (3,−1,2) 

𝑃 = (−1,0,1) 

𝑟: {
𝑥 = −1 + 3𝛼
𝑦 = −𝛼
𝑧 = 1 + 2𝛼

 𝛼 ∈ 𝑅 

 

2) Hallamos el punto de corte de r en el plano π, para ello sustituimos las coordenadas de 

la recta en el plano. 

𝜋: 3𝑥 − 𝑦 + 2𝑧 = 4 → 3 ∙ (−1 + 3𝛼) − (−𝛼) + 2 ∙ (1 + 2𝛼) = 4 → 𝛼 = 5/14 

{

𝑥 = −1 + 3 ∙ 5/14 = 1/14
𝑦 = −5/14 = −5/14

𝑧 = 1 + 2 ∙ 5/14 = 24/14
→ 𝑃𝐶 = (1/14,−5/14,24/14)  

3) Y sabemos por definición que PC es el punto medio de PP’, donde P’ es punto 

simétrico de P respecto del plano π 

 

𝑃𝑀PP’ = 𝑃𝐶 →
(−1,0,1) + (𝑥0, 𝑦0, 𝑧0)

2
= (1/14,−5/14,24/14) 

𝑃′ = (𝑥0, 𝑦0, 𝑧0) = (16/14,−5/14, 34/14) = (8/7, −5/7,17/7) 

 

 

https://www.geogebra.org/m/ngaqhtv6 
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 4.1    Una empresa de paquetería quiere diseñar distintos modelos de cajas. Uno de esos 

modelos consiste en una caja de 80 cm3 de volumen, con base y tapa cuadradas. El 

precio del material de las paredes laterales es de 1 céntimo por cm2. La base y tapa se 

construirán con un material de calidad superior a las caras laterales de la caja, siendo 

éste un 25% más caro. 

Obtener: 

4.1.1 (0.75 puntos) La función 𝑃(𝑥) que proporciona el precio del material de la caja en 

función del lado de la base  𝑥. 

 

Sabemos que  𝑉𝑐𝑎𝑗𝑎 = 80 → 𝐴𝑏𝑎𝑠𝑒 ∙ 𝑎𝑙𝑡𝑢𝑟𝑎 = 80 → 𝑥
2 ∙ 𝑦 = 80 → 𝑦 =

80

𝑥2
 

𝑥 =  𝑚𝑒𝑑𝑖𝑑𝑎 𝑑𝑒𝑙 𝑙𝑎𝑑𝑜 𝑑𝑒 𝑙𝑎𝑠 𝑏𝑎𝑠𝑒𝑠 

𝑦 =  𝑚𝑒𝑑𝑖𝑑𝑎 𝑑𝑒 𝑙𝑎 𝑎𝑙𝑡𝑢𝑟𝑎 𝑑𝑒 𝑙𝑎 𝑐𝑎𝑗𝑎  

Puesto que el posible desarrollo de la caja es el siguiente, hallamos  𝑃(𝑥)  

 

𝑃(𝑥) = 1,25 ∙ 2 ∙ 𝑥2 + 4 ∙ 𝑥 ∙ 𝑦 = 2,5𝑥2 + 4 ∙ 𝑥 ∙
80

𝑥2
= 2,5𝑥2 +

320

𝑥
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4.1.2 (1.25 puntos) Las dimensiones de la caja para que la función  P(x)  tenga el menor 

valor posible. 

Se trata de minimizar P(x) 

𝑃(𝑥) = 2,5𝑥2 +
320

𝑥
 

𝑃′(𝑥) = 5𝑥 −
320

𝑥2
= 0 → 5𝑥3 − 320 = 0 → 𝑥3 = 320/5 = 64 → 𝑥 = √64

3
= 4 

                         𝟎                    4                       ∞ 

𝑃′(𝑥) - + 

𝑃 (𝑥)   

                mínimo 

(𝟎, 𝟒) 𝑃′(1) =  −𝟑𝟏𝟓 < 𝟎 → 𝑷(𝒙) 𝒅𝒆𝒄𝒓𝒆𝒄𝒆 

(𝟒,+∞) 𝑃′(5) = 61/5 > 0 → 𝑷(𝒙) 𝒄𝒓𝒆𝒄𝒆 

 

En x=4 hay un mínimo, y por tano las dimensiones de la caja son:  

𝑥 = 4, 𝑦 = 320/42 = 20 

 

4.1.3  (0.75 puntos) El precio del material en el caso anterior. 

𝑃(𝑥) = 2,5𝑥2 +
320

𝑥
= 2,5 ∙ 42 +

320

4
= 120 𝑐𝑡 € = 1,20 € 

https://www.geogebra.org/m/rrexhqne 
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4.2 Dada la función real de variable real 

𝑓(𝑥) = 𝑥|𝑥 − 2| 

Se pide: 

4.2.1 (1 punto) Representar la región comprendida entre la gráfica de la función f , el eje 

de abscisas (eje OX) y las rectas x = – 1   y x = 5. 

 

1) Vamos a transformar la función con valor absoluto en una función definida a trozos: 

Sabemos que:  𝑓(𝑥) = |𝑔(𝑥)| = {
𝑔(𝑥),     𝑠𝑖 𝑔(𝑥) > 0 

−𝑔(𝑥),    𝑠𝑖 𝑔(𝑥) ≤ 0
 

 

𝑓(𝑥) = {
𝑥 ∙ (𝑥 − 2), 𝑠𝑖 𝑥 > 2
𝑥 ∙ (−𝑥 + 2), 𝑠𝑖 𝑥 ≤ 2

 

𝑓(𝑥) = {
𝑥2 − 2𝑥, 𝑠𝑖 𝑥 > 2

−𝑥2 + 2𝑥, 𝑠𝑖 𝑥 ≤ 2
 

2) Ahora representamos la función resultante  

(−1,2) → ℎ(𝑥) = −𝑥2 + 2𝑥  

a) Hallamos el vértice  

𝑉𝑥,𝑦 = (
−𝑏

2𝑎
, 𝑔(−𝑏/2𝑎)) = (1,1) 

b) Tabla de valores 

x −𝑥2 + 2𝑥 

-1 -3 

0 0 

1 1 

2 0 
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(2,5) → ℎ(𝑥) = 𝑥2 − 2𝑥  

a) Hallamos el vértice  

𝑉𝑥,𝑦 = (
−𝑏

2𝑎
, ℎ(−𝑏/2𝑎)) = (1,−11) 

b) Tabla de valores 

x 𝑥2 − 2𝑥 

2 0 

3 3 

4 8 

5 15 
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4.2.2 (1.5 puntos) Calcular el área de la región anterior. 

 

Se trata de una integral definida: 

 

∫ 𝑓(𝑥)𝑑𝑥
5

−1

= |∫ −𝑥2 +2𝑥 𝑑𝑥
0

−1

| + ∫ −𝑥2 +2𝑥 𝑑𝑥 +
2

0

∫ 𝑥2 −2𝑥 𝑑𝑥 = 62/3 𝑢2
5

2

 

 

 

 

https://www.geogebra.org/m/u2qqpzxr 
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