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EXAMEN DE SELECTIVIDAD JUNIO 2025. MATEMATICAS II

PREGUNTA 1: PROBABILIDAD Y ESTADISTICA (2,5 puntos)

Una pizzeria ofrece tres tipos de pizza: margarita, vegetariana y pepperoni. A lo largo de
los afos, utilizando su aplicacidn para teléfonos inteligentes, el restaurante ha recopilado
datos sobre las preferencias de los clientes, calculando que el 40% de sus clientes piden

pizza margarita, el 25% elige la pizza vegetariana y el resto prefiere la pizza pepperoni.

1.1 (0.25 puntos) Si se elige un cliente al azar, ¢ cual es la probabilidad de que haya

pedido una pizza pepperoni?

Sucesos:

M = clientes que piden pizza margarita con una P(M) = 0.40
V= clientes que piden pizza vegetariana con una P(V) = 0.25
P = clientes que piden pizza Margarita con una P(P) = 0.35

P(P)=0.35

1.2 (0.75 puntos) ¢ Cual es la probabilidad de que dos clientes elegidos al azar hayan

pedido distintos tipos de pizza?

AA = dos clientes al azar hayan pedido distintos tipos de pizza

1 forma

P(AA) =P(MNV)+P(VNM)+P(MNP)+P(PNM)+P(VNP)+P(PNV)=
=2-0.40-0.25+2-0.40-0.35 + 2-0.25 - 0.35 = 0.655

2 forma

P(AA) = P(MM) + P(VV) + P(PP) = 0.40 - 0.40 + 0.20 - 0.20 + 0.35 - 0.35 = 0.345

P(AA) =1—- P(AA) =1 - 0.345 = 0.655
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Para mejorar su servicio y agilizar los tiempos de preparacion, la pizzeria decide
considerar un grupo tipico de 10 clientes con el objetivo de decidir cuantas pizzas
margarita preparar con antelacion y evitar retrasos durante las horas con mas demanda,
minimizando el desperdicio.

1.3  (0.75 puntos) ¢;Cual es la probabilidad de que exactamente 4 de los 10 clientes

pidan pizzas margarita?

X = numero de clientes que piden una pizza margarita
p=4/10=0.40

X =B(n=10,p=0.40)

PX=k) =()p* A-p)"* 5 PK =4) = (140) 0.4* - (1 — 0.4)19* = 0.2508 =0.2508

1.4 (0.75 puntos) ¢ Cual es la probabilidad de que al menos uno de los 10 clientes del

grupo pida una pizza margarita?

10
0

P(X21) =1-P(X<1)=1-P(X=0)=1—(")04% (1-0.4)1° =1 - 00605

= 0.99395

0

_/~ Binomial 10 p 0.4

1 0]

p( 1 <X )= 0.004

https://www.geogebra.org/m/cihsydmb
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PREGUNTA 2: ALGEBRA (2,5 puntos)

2.1 En un sistema de procesamiento de imagenes se utiliza una matriz para transformar
ciertos datos. La matriz depende del parametro real a y es:

1 «a 0
A=|0 « 0
0 0 1—-«

2.1.1 (1.25 puntos) En uno de los procesos, para que el sistema funcione, se necesita que
la matriz sea idempotente, es decir que su cuadrado coincida con ella, 42 = A. Obtener
los valores a que permitan funcionar a este proceso.

(1 a 0 )(1 a 0 ) 1+a-0+0-(1—-a) a’>+a 0
A2 =

0 « 0 0 «a 0 = 0 a’ 0
0 0 1-a/\0 0 1—-«a 0 0 (1 - a)?
1+a-0+0-1-a) a’>+a 0 1 « 0
SiA2=A-> 0 o 0 =<0 a 0 )
0 0 (1 - a)? 0 0 1-«a

a*+ta=a->a*=0->a=0
1-a?=1-a-1-2a+a*=1-a-a*—-a=0->%"

2

a=0
al=a-a’—a=0->""_

Y puesto que para que A2 = A los valores de a« deben de ser iguales en la totalidad de
las ecuaciones.
Solucion: para que A sea idempotente a = 0

Nota: En GeoGebra se puede introducir una matriz con parametro, pero se debe de
utilizar x como parametro.

Dos formas distintas

A={{1,x,0},{0,x,0},{0,0,1-x}} Mediante la hoja de célculo.

1) Los elementos se introducen en las
celdas.

2) se seleccionan los elementos y se pulsa
botdn derecho de ratén - Crear matriz

https://www.geogebra.org/m/fcehuurm
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2.1.2 (1.25 puntos) En otro proceso diferente, se necesita utilizar la matriz inversa de A.
Obtener los valores de a para los cuales existe la inversa y calcular esta inversa en
funcion de a.

JA1si|Al#0

Vamos a calcular el determinante de la matriz A en funcién de «

1 «a 0
0 a 0 [=1'a(1-a)+0:0:0+0'a-0)—(0:-a-0+0:0:1+(1—-a) 0 -a)
0 0 1«

a=0

= — 2: . — =
=a—-a*=0-a-(1—-a) O_)l—a=0—>a:1

JA cuandoa #0o0a # 1

Ahora vamos a calcular la inversa de A en funcién de «

A1 (Ad(A))
~ A
0 1- 1- 0 0 s 0 0
N T O| _|_| 0 | 1 oa|_ (&7
Adj(A) = 0 1-a 0 0 ol [Tl &-a —-a+1 0
_I_la 0 | _|_1 a 0 0 a
a 0 0 «a
—a’+a a*—a 0
Adjt=( o —a+1 0
0 0 a
1 —a’+a a’—a 0 I -1 0
A7t |A|(AdJ(A))_ —Qz 0 —a+1 0|=(0 1/a 0
0 0 a 0 0 1/0-a)

Una forma de comprobar con la calculadora o con GeoGebra que Adj(A)! es despejar de
la igualdad.

At = W(AdJ(A)t) - A7 |A] = Adj(A)*

https://lwww.geogebra.org/m/fcehuurm

Nota: GeoGebra dispone de un manual donde se pueden consultar los comandos

disponibles por areas. https://geogebra.qgithub.io/docs/manual/es/
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3x—2y—3z=0
2.2 Sea el sistema de ecuaciones lineales {2x + ay — 5z = =3
x+y+2z=3

donde a es un parametro real. Se pide:

2.2.1 (1 punto) Discutir el sistema en funcion del parametro a.

Para discutir el sistema debemos de emplear el T. Rouché-Frobenius, para ello debemos
de estudiar el rango de la matriz de coeficientes y de la ampliada.

3 =2 =3 3 -1 -3 :0
A=|2 a -5 Ax=|2 a =5 §—3>
1 1 2 1 1 2 i3
Para estudiar el rg(A) debemos calcular el determinante de la matriz de coeficientes.
3 -2 -3
|JAl]=12 a =5|=9a+27=0-a=-3
1 1 2

Caso 1: (a# -3)
Sia#-3 -2 rg(A) = 3 =rg(A*) = numero de incégnitas - SCD.

Nota: el rg(A*) = 3 puesto que A’ es una matriz 3x4 y su rango es 3 cOmo maximo, y
puesto que una de las matrices de la ampliada es A entonces su rango coincide con esta.

Caso 2: (m=-3)

3 -2 =3 3 -1 -3 :0
A=|2 -3 -5|A*x=|2 -3 -5 :=-3
1 1 2 1 1 2 i3

Puesto que |A| = 0 - rg(A) = 2 (puesto que existe una matrix 2x2 con determinante
distinto de 0)

13]|=3+0

b % =-9+4=-5=0
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Ahora estudiamos el determinante de A*

3 -1 -3 :0
A*=<2 -3 -5 s—3>
1 1 2 :3

Comprobamos si existe una matriz 3x3 cuyo determinante es diferente de cero.

3 -1 0 -1 -3 0 3 -3 0
|A1| =2 -3 -3|=0 |4A2]|=|-3 -5 -3[=0|43]=|2 -5 -3|=0
1 1 3 1 2 2 1 2 2

Y, por tanto: rg(A) = 2 rg(A’) = 2 < numero de incognitas - SCI
Conclusién:

Si a#-3 2 rg(A) = 3 =rg(A’) = numero de incognitas - SCD.
Sia=-3rg(A) = 2 rg(A’) = 2 < numero de incégnitas > SCI

2.2.2 (0.75 puntos) Calcular las soluciones del sistema cuando éste sea compatible
indeterminado.

Sustituimos a por -3, y resolvemos por Gauss o por Cramer:

2x —3y—5z=-3
x+y+2z=3

3 -1 -3 :0 L /1 1 2 :3 1 1 2 :3
2 =3 =5 i-3)p o p3l2 -3 -5 i-3]|-5F2-2F15|0 -5 -9 -9

1 1 2 i3 3 =2 =3 :0 F3—3F1 0 -5 -9 :-9

1 1 2 i3 1 1 2 i3
(O -5 -9 : —9) - (0 -5 -9 : —9>
0 -5 -9 :-9/F3 — F2 0 O 0 :0

Tomamos como z = A, y sustituimos en el sistema:

{3x—2y—32=0

—5y—-9z2=-9->5-5y-9-1=-9->5y=

9 -9 6—A1
+2l=3->ox=—

2z =3
X+y+2z - x+ z z

Solucion: (x,,2) = (%2,°22,1) L€ R
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2.2.3 (0.75 puntos) Calcular las soluciones del sistema para a = 0.

Sustituimos a por -3, y resolvemos por Gauss o por Cramer:

2x —5z=-3
x+y+2z=3

3 -1 -3 :0 L (11 2 i3 1 1 2 i3
2 0 =5 3—3 F1 o F3 2 0 -5 i-3|->F2-2F1-{0 -2 -9 :-9

3 =2 =3 :0 F3 —3F1 0 -5 -9 :-9

1 1 2 i3 1 1 2 i3
(0 -2 =9 —9) - (O -5 -9 : —9)
0 -5 -9 :{-9/2F3 — 5F2 0 O 27 27

Y ahora resolvemos el sistema:

{Sx—Zy—Sz=0

x+y+2z=3
{ -2y — 9z=-9
27z =27
z=1->-2y—-9=-9-5-2y=0-y=0
x+y+2z=3-x+0+2=3->x=1
Solucioén: (x,y,z) = (1,0,1)

https://www.geogebra.org/m/jtyxxy4x
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x=1+22
P3.1 Dada la recta r:{ y=421 yIarectas:{
z=2-1

x=-1
x+2y+z=0

Calcular:
3.1.1 (1 punto) Si existen, las coordenadas del punto de corte de ambas rectas.

1) Primero vamos a pasar la recta s a forma paramétrica

{ x=-1
S'x+2y+z=0
x=-1
1—«a PS = (_1'1/2'0)
Siyy = LXAER >
d, =(0,—-1/2,1) = (0,—1,2)
zZ=«a
X=1+21 Pr=(11012)
ry y=1 ,A€ER->->
s=2_1 d. =(2,1,-1)

2 ) Ahora vamos a estudiar la posicion relativa de las rectas.
Primero vamos a crear un vector determinado por los puntos de las rectas s y r.
PP =P — P, =(1,02) - (-1,1/2,0) = (2,—-1/2,2)

Ahora construimos las matrices My M*:

0 2 0o 2 2
M= <—1 1 |,M* = <—1 1 —1/2
| 2 -1 2

Y estudiamos sus rangos:
12]|=2+#0

0
-1

Por tanto, el rg(M) = 2

ﬂ=0+2=2¢0

Ahora estudiamos el rango de M*

o 2 2
IM+|=|-1 1 =1/2|=0
2 -1 2

Como rg(M) = 2rg(M x) = 2 > rys secortan.
3) Ahora hallamos el punto de corte de las rectas igualando

-1=1421-1=-1-PC=(xy,2z) =(-1,-13)
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3.1.2 (1 punto) La ecuacion del plano que contiene a ambas rectas.

Para construir un plano necesitamos tres puntos o 1 punto y dos vectores directores:

—

d, = (0,—1/2,1) ~ (0,—1,2)

d; = (21,-1)
P. = (1,0,2)
x=1+2p x—1 0 2
n{ y=—a+pf ¢, ER->| y -1 1|=0-m—x+4y+2z—-3=0
z=242a—-p z—2 2 -1

3.1.3 (0.5 puntos) La distancia del punto P = (1,0,2) a dicho plano.

|A-xg+B-yo+C-2zp+D| |-1-1+4-0+2-2—3]
d(P,m) = = =0 -oPE€enm
VAZ + BZ + (2 J(=1)% + 42 + 22

https://www.geogebra.org/m/agxmasy9
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3.2 Se considera el plano m:3x —y + 2z = 4 y el punto P = (—1,0,1). Se pide:
3.2.1 (1 punto) La ecuacion del plano perpendicular a p que pasaporPy Q = (2,1,2).

Para construir un plano necesito dos vectores directores y punto, o tres puntos:

My = dyy = (3,—1,2)

d,=P0=Q-P=(212)—-(-101) = (3,1,1)
P =(-1,01)

La ecuacion del plano viene dada por:

x=-1+4+3a+3p x+1 3 3
o{ y=—a+B aqBfER->| y -1 1|=0-0:-3x+3y+6z—9=0
z=14+2a+p z—1 2 1

3.2.2 (0.5 puntos) La distancia del punto Q al plano .

A xg+B-vo+C-zy+D| |3:2—1-1+2-2—4 5 5/14
= = = u
VA2 ¥ B2 + (2 J32+ (—1)2 + 22 Via 14

d(P,m) =
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3.2.3 (1 punto) El punto simétrico de P respecto del plano 1.

1) Primero construimos la recta r, perpendicular a ™ que pasa por P

n, =d, = (3,-1,2)

P=(-10,1)
x=-143a

r{ y=—-a a€R
z=1+4+2«x

2) Hallamos el punto de corte de r en el plano 1, para ello sustituimos las coordenadas de
la recta en el plano.

m3x—y+2z=4-3-(-14+3a)—-(—a)+2-(1+2a)=4—->a=5/14

x=-1+3-5/14 =1/14
{ y=-5/14=-5/14 - PC = (1/14,—5/14,24/14)
z=1+42-5/14 = 24/14

3) Y sabemos por definicion que PC es el punto medio de PP’, donde P’ es punto
simétrico de P respecto del plano

—1,0,1) + (xq, vo, Z
PMPP':PC_)( ) + (%0, Y0, 20)

= (1/14,-5/14,24/14)

2
P' = (xq, Y0, 20) = (16/14,—5/14,34/14) = (8/7,-5/7,17/7)

https://www.geogebra.org/m/ngaghtv6é
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4.1 Una empresa de paqueteria quiere disefiar distintos modelos de cajas. Uno de esos
modelos consiste en una caja de 80 cm? de volumen, con base y tapa cuadradas. El
precio del material de las paredes laterales es de 1 céntimo por cm?. La base y tapa se
construiran con un material de calidad superior a las caras laterales de la caja, siendo
éste un 25% mas caro.

Obtener:

4.1.1 (0.75 puntos) La funcién P(x) que proporciona el precio del material de la caja en
funcion del lado de la base x.

Sabemos que Veqjq = 80 = Apase " altura =80 —>x2-y =80 >y =
x = medidadel lado de las bases
y = medida de la altura de la caja

Puesto que el posible desarrollo de la caja es el siguiente, hallamos P (x)

80 320
P(x)=1.25-2-x2+4-x-y=2,5x2+4-x'F=2,5x2+T
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4.1.2 (1.25 puntos) Las dimensiones de la caja para que la funciéon P(x) tenga el menor
valor posible.

Se trata de minimizar P(x)

320
P(x) = 2,5x% + ~

320
P'(x) =5x = =5 =0-5x° =320 = 0 > x* = 320/5 = 64 > x = V64 = 4
0 4 %
P'(x) - +
P (x) ~a —
minimo

(0,4) P'(1) = =315 < 0 - P(x) decrece
(4,+) P'(5) =61/5 >0 - P(x) crece

En x=4 hay un minimo, y por tano las dimensiones de la caja son:

x =4,y =320/4% = 20

4.1.3 (0.75 puntos) El precio del material en el caso anterior.
320 320
P(x) = 2,5x2 +—= 2,5 - 42 +— = 120 ct € = 1,20 €

https://www.geogebra.org/m/rrexhgne
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4.2 Dada la funcion real de variable real
f(x) =x|x — 2|
Se pide:

4.2.1 (1 punto) Representar la region comprendida entre la grafica de la funcion f | el eje
de abscisas (eje OX)ylasrectasx=-1 yx=5.

1) Vamos a transformar la funcion con valor absoluto en una funcion definida a trozos:

Sabemos que: f(x) = |g(x)| = {L_qggcj) S;ig;?3)>SOO

x-(x—2), six > 2

f<x):{x-(—x+2), six <2

f(x)={x2—2x, six > 2

—x? + 2x, six <2

2) Ahora representamos la funcién resultante
(-1,2) - h(x) = —x? + 2x
a) Hallamos el vértice

—b
Viy = (z.g(—ma)) = (1D

b) Tabla de valores

X | —x?+ 2x
-11-3

010

111

210
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(2,5) - h(x) = x? — 2x

a) Hallamos el vértice

Vey = (;—s,h(—b/Za)> =(1,-11)

b) Tabla de valores

2

X|x®—2x

2|0

3|3

48
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4.2.2 (1.5 puntos) Calcular el area de la region anterior.

Se trata de una integral definida:

5 0 2 5
J. f)dx = f —x2 4 2x dx +f —x2+2xdx+f x% —2x dx = 62/3 u?
-1 -1 0 2

ecl:x=-1 ec2:x=5

https://www.geogebra.org/m/u2gapzxr
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